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Impulsive sound and vibration signals in machinery are often caused by the
impacting of components and are commonly associated with faults. It has long
been recognized that these signals can be gainfully used for fault detection.
However, it tends to be difficult to make objective measurements of impulsive
signals because of the high levels of background noise. This paper presents an
enhancement scheme to aid the measurement and characterization of such
impulsive sounds, called a two-stage Adaptive Line Enhancer (ALE), which
exploits two adaptive filter structures in series. The resulting enhanced signals are
analyzed in the time–frequency domain to obtain simultaneous spectral and
temporal information. In order to apply the two-stage ALE successfully the filter
parameters and adaptive algorithms should be chosen carefully. Conditions for
the choice of these parameters are presented and suggestions are made for suitable
adaptive algorithms. Finally, the techniques developed are applied to the diagnosis
of faults within an internal combustion engine and to data from an industrial
gearbox.
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1. INTRODUCTION

The use of acoustic and vibration measurements for the purposes of machine
condition monitoring is an established field [1]. The signals measured from
machinery in a normal condition are commonly complicated signals containing
both narrowband and broadband components. The presence of a fault is often
indicated by the presence, or increase in, impulsive signal elements [1, 2]. These
impulsive signals may be due to a change of stiffness or mass in the system [3, 4]
and by characterizing them one can gain insight into the likely causes of the fault.
The detection of these impulsive signals is hampered by the presence of the signals
associated with the normal running of the machine, with the consequence that the
detection of the weak impulsive signals, which are especially associated with
incipient faults, is difficult. It is the ‘normal’ signals which form the background
noise environment against which the detection of fault induced impulsive signals
must be conducted. To aid fault detection, it is valuable to enhance the impulsive
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signals by suppressing this background noise prior to further processing. Such
pre-processing can be based upon one of several signal processing paradigms.
After successful pre-processing the signal has an increased Signal to Noise Ratio
(SNR), which makes it more amenable to one of a gamut of signal processing tools
which can be used to characterize the signal, including Auto-Regressive (AR)
modelling [5], kurtosis evaluation [6], cepstrum analysis [7], time–frequency
analysis [8–10], higher order spectra [11] and higher time frequency analsis [12].

This paper is concentrated on the problem of pre-processing the measured
signals to permit a more accurate characterization of the fault related impulsive
components. Several such schemes have been proposed, but the most prevalent of
these is time domain averaging [2, 13, 14]. This involves averaging data from
successive cycles of the machine component being studied. To use time domain
averaging one requires information about the rotation speed of a machine, usually
supplied in the form of synchronized pulse signals. With access to a reliable
synchronized signal, time domain averaging represents one form of coherent
averaging, which is an optimal method for the reduction of random noise
components. Time domain averaging, with suitable implementation, can also cope
with non-stationary situations where the rotation speed is varying. The
consequence of this is that time domain averaging is a widely used, and powerful,
pre-processing tool. However, it can be inefficient at reducing some tonal
components of the background noise: i.e., those that are commensurate (or nearly
commensurate) with the rotational frequency. The result of this is that the time
averaged signal may possess so-called ‘ghost components’ [4, 8], which are residual
narrowband signals that time domain averaging is poor at attenuating. There are
also some applications in which a synchronization signal is either unavailable or
is of poor quality. In this paper a pre-processing scheme is considered which
addresses problems in which suitable synchronizing information is unavailable; the
scheme also avoids the generation of ghost components.

One pre-processing method which does not rely upon synchronization, is based
on the Adaptive Noise Canceller (ANC) [17]. Whilst this method does not require
a signal synchronized to the shaft rotation it does need a second, reference,
measurement, which is correlated only with either the background noise or the
impulsive signals. Again there are applications where such a reference signal is not
readily available.

In this paper an enhancement scheme is developed, referred to as a two-stage
ALE (Adaptive Line Enhancer), specifically for situations where no synchronous
or reference signal is available. The first stage of the scheme is employed to remove
the tonal signal components of the background noise, whilst the second stage is
aimed at enhancing the impulsive signal relative to the broadband random
components. Successful application of the algorithm depends on careful selection
of the parameters of the adaptive filters at each stage. Conditions are developed
and presented for the selection of these parameters; choices are proffered for the
update algorithms in the adaptive filters. Specifically, the LMS algorithm is used
for the first stage and the QR-LSL algorithm (a least squares lattice algorithm
based on QR decomposition) is employed for the second. To illustrate the
effectiveness of the scheme, the output is examined via its time–frequency



xk yk ek

dk

+

(a)

Adaptive
filter

xk xk- yk ek

xk

+

(b)

Adaptive
filter

z–

D.R. 858834 JSV 217/3 (Issue) MS 2672

    487

representation. A model of the noise/vibration signals is presented, reflecting an
archetypal acoustic or vibration signal measured in such problems. These model
signals are then processed by using the proposed strategy. Beyond these simulation
examples, results are also presented for data measured from real systems,
specifically from an automotive engine and an industrial gearbox.

2. ADAPTIVE SIGNAL PROCESSING

2.1.    (ANC)

Classical adaptive filters are linear (normally FIR) digital filters which adjust
their parameters (coefficients) in order to optimize some performance criterion.
Figure 1(a) depicts such a structure configured in a noise cancelling mode, as
discussed in reference [17]. In this mode the adaptive filter requires two inputs; the
desired signal, dk , and a reference measurement xk .

For the sake of this discussion it is assumed that the desired input to the filter
consists of measurements of a signal of interest, sk , corrupted by an additive noise,
wk : i.e., dk = sk +wk . For successful operation of the filter the reference signal, xk ,
should be an independent measurement of the corrupting noise and be
uncorrelated with the signal of interest. The filter automatically adjusts its
coefficients in such a way as to minimize some cost function, normally the mean
squared error, E[e2

k ]. By filtering xk one can construct an estimate of the corrupting
noise signal, wk , but one cannot form an estimate of sk , since it is assumed that
xk and sk are uncorrelated. By minimizing the mean squared error one forces the
filter output, yk , to become an estimate, wk , which when subtracted from dk yields
an enhanced version of sk .

Figure 1. Adaptive filter configurations: (a) adaptive noise canceller; (b) adaptive line enhancer.
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The problem with ANC is that one requires a reference signal which is strongly
correlated with the noise signal, wk , but uncorrelated with the signal of interest.
The performance of an ANC scheme is usually limited by the availability and
quality of the reference signal.

2.2.   

An alternative mode of operation for an adaptive filter, based on ANC, is
provided by an adaptive line enhancer (ALE), as shown in Figure 1(b). This is a
simple variation on the ANC requiring only a single input signal. In this case the
reference signal is obtained by delaying the input signal by a fixed number of
samples, D. The adaptive filter then endeavours to predict the signal xk from the
delayed samples. The result is that any input components which are predictable
over the delay appear at the filter output, yk , whilst the error signal, ok , contains
those components which are unpredictable over the delay. The classical
application of this technique is to enhance narrowband signals in noise, in
applications such as SONAR.

It should be noted that the filter offers estimates of both the broadband and
narrowband signals so can be used equally for the suppression of tonal signals.

2.3.   

There exists a vast array of algorithms for updating the coefficients of the
adaptive filter (see, e.g., references [19, 22]). The most commonly considered is the
Least Mean Squares (LMS) algorithm, whose update equation is
wk+1 =wk + mokwk , where wk is a vector containing the L coefficients of the FIR
filter, xk is a vector containing the L most recent samples of the reference time
series and m is a user-defined constant which determines the convergence
characteristics of the filter.

The LMS algorithm is the basis of most adaptive filters used in practice. The
primary reason for this is the LMS’s simplicity. Specifically it has a computational
load which is proportional to the filter length, making it realizable in many
real-time applications. However whilst the LMS algorithm has great practical
utility it does suffer from performance limitations which stem from the competing
requirements faced when choosing m. Large values of m are needed for rapid
convergence but these large values also induce a large steady state error in the
converged filter, termed misadjustment.

An alternative class of adaptive filter algorithms is based on the concept of least
squares. These algorithms exactly optimize a data dependent criterion. Within the
class of least squares methods there are a great many algorithms one can select
from and it should be emphasized that these methods compute (in theory) the same
solution and hence have the same performance. The class of least squares
algorithms have the advantage of rapid transient convergence, i.e., their initial
convergence, and adaptation to abrupt changes in a signal, is superior to that of
the LMS.

Original formulations of the least squares algorithms required a computational
load proportional to L2, which generally rendered them impractical for real time
implementation. Later formulations appeared which compute the least squares
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Figure 2. Two-stage ALE.

solution requiring a computational load which is proportional to L. These ‘fast’
formulations suffer severely from numerical instabilities, with the result that after
a relatively small number of iterations the algorithms diverge. More recently,
alternative fast formulations with much greater nunerical stability have been
proposed: e.g., the QR lattice [19, 23]. These algorithms are significantly more
computationally intensive than LMS but they are practical for small filter lengths
and have significant performance advantages over the LMS algorithm.

2.4.  - ALE     

The purpose of this section is to discuss adaptive methods for enhancing
impulsive signals which are masked by both broadband random noise and
narrowband tonal signals. The proposed solution is based upon a two-stage ALE
[18], a block diagram of which is shown in Figure 2. This structure consists of two
ALE applied in series, each aiming to achieve distinct goals. The first stage aims
to remove the tonal noise components, whilst it is the task of the second stage to
reduce the broadband noise.

In this configuration the error signal from the first ALE is passed to a second
stage of processing. The notation is modified to distinguish between signals in the
two stages; see Figure 2 for details. Specifically the error signal, ok,1, is used as the
input signal to the second ALE. The function of the second stage is to enhance
the impulsive signals relative to the broadband noise. The philosophy here relies
on the assumption that impulsive signals are locally predictable: i.e., that they can
be thought of as relatively narrowband transient events. The impulses are clearly
non-stationary, but if the adaptive filter is agile enough, it is able to successfully
perform local predictions on the impulsive signals. In this way one can obtain
enhancements of such signals relative to the broadband noise. The delay D2 must
be selected to be short enough to ensure that the impulsive signals do not
decorrelate, but sufficiently large as to decorrelate the noise. The choice D2 =1 is
a conservative one, since it minimizes the attenuation of impulsive signals, but in
choosing it one assumes that the background noise has a flat spectrum. It is this
option which is employed in this paper. The final output of the two-stage ALE
system is the filter output yk,2.
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2.5.     

It is important to determine which type of adaptive algorithm should be used
in each of the two stages of this scheme. The objective of the first stage ALE is
to remove the harmonic components from the input signal. To achieve this
successfully a long filter length is required to increase the attenuation of the filter
at the harmonic frequencies and also to remove the interactions between the
various spectral lines [20]. The LMS algorithm [19] is suited for this task because
of its relatively low computational cost when long filter lengths are employed. The
objective of the second stage ALE is to reduce the level of the broadband noise.
The impulsive signals are cyclic with a short duration and are non-stationary. The
adaptive algorithm must have rapid transient convergence characteristics to track
these non-stationarities. To achieve the required rapid convergence, an exact least
squares algorithm [18, 21, 22] is recommended. To keep the computational load
as small as possible one is naturally drawn to the ‘fast’ formulations of these
algorithms, such as the QR lattice algorithm.

2.6.    

The periodic nature of the impulsive signal lays open the possibility that the first
stage of the scheme will identify them with the narrowband components and in
doing so attenuate them. To avoid such an eventuality care over the choice of the
parameters D1 and L1 must be exercised. For the LMS algorithm the update
equation for the filter weight vector wk can be written as

wk+1 = (I− mxk−D1xk−D t
1
)wk + mxkxk−D1. (1)

From equation (1), with w0 =0, it is noted that if for all k either xk or xk−D1 is
zero, the weight vector remains zero. For the impulsive signal shown in Figure 3(a)
this condition is met when L1 QTp −2D1, where Tp is the period of the signal.
Under this assumption, (1) when 0E kED1,

xk $ 0, xk−D1 = 0, (2)

and (2) when D1 Q kQTp,

xk =0, xk−D1 $ 0, (3)

Hence, if the condition L1 QTp −2D1 is satisfied, then the filter’s coefficients
remain at zero and the impulsive signal is not attenuated by the adaptive filter,
as shown in Figures 3(c) and (d), whereas wk is non-zero if the condition
L1 QTp −2D1 is not satisfied. A similar effect can be noted in the presence of
broadband noise as shown in Figures 3(e) and (f). In this case the coefficients of
the adaptive filter are non-zero because of a low level of noise corruption. From
a statistical viewpoint, by taking the expectation of equation (1) one obtains
(assuming the statistical independence of xk−D1 and wk )

E[wk+1]= (I− mE[xk−D1xk−D t
1
])E[wk ]+ mE[xkxk−D1]. (4)
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Equation (4) illustrates that under the previous assumptions then E[wk ]=0, since
E[xkxk−D1]=0, and w0 = 0. Further assuming a slow adaptation rate also means
that the level of misadjustment will be small, implying that wk 1 0 [19]. The above
restriction on the length of the filter is at odds with the desire to increase
resolution, and hence increase the attenuation of the unwanted narrowband

Figure 3. (a) Noise-free signal, L1 qTp −2D1; (b) impulse response of the adaptive filter; (c)
noise-free signal, L1 QTp −2D1; (d) impulse response of the adaptive filter; (e) additive Gaussian
noise; (f) impulse response of the adaptive filter.
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signals. One aims to select L1 as close to Tp −2D1 without exceeding it (note that
Tp is generally not known a priori).

3. TIME–FREQUENCY ANALYSIS

Having applied the two-stage pre-processing scheme one is still left with the
problem of characterizing the signals. Herein this characterization will be
performed via a time–frequency representation. Such a characterization allows
information about the temporal location and frequency content of a fault signal
to be identified simultaneously.

There is a wide variety of time–frequency analysis techniques available. Within
this paper attention is restricted to the so-called bilinear class of distributions.
These have the advantage that they can be easily constrained to yield real
distributions which can be interpreted as two dimensional decompositions of a
signal’s energy. Mathematically, a generalized bilinear time–frequency represen-
tation is described as a member of Cohen’s class [24] and can be written in the
form

S(t, f )=g
a

−a g
a

−a

f(u− t, t)x0u+
t

21x*0u−
t

21 e−j2pft du dt, (5)

where f(t, t) is the kernel function which distinguishes one member of Cohen’s
class from another. If the kernel function is selected such that f(t, t)= d(t) for
all t, where d(t) is the Dirac delta function, equation (5) reduces to the well-known
Wigner distribution. It is interesting to note that for this kernel the temporal
resolution is as sharp as possible, because of the Dirac impulse, whilst the
frequency resolution is related only to the duration of the signal record available.
Thus, generally, the Wigner distribution has good time–frequency resolution.
However, it has unwanted properties, such as the fact that it can be negative and
that it contains interference terms between components. In order to smooth these
cross-terms, a variety of methods has been proposed. Conventionally this work
has been concentrated on the problem of determining suitable kernel functions,
f(t, t) [24], which retain the desirable properties of the Wigner distributions but
mitigate some of its less desirable characteristics. In this paper one commonly
considered kernel function introduced by Choi and Williams [25] is employed
which has an exponential form, and leads to a representation

W(t, f )=gt

e−j2pft gu

1
2tXy

p
e−j2p(ft+ y(u− t)2/4t2)x0u+

t

21x*0u−
t

21 du dt, (6)

where y (yq 0) is a scaling factor and controls the kernel shape.
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4. NUMERICAL MODELS FOR NOISE/VIBRATION SIGNALS

4.1.    

The form of signals encountered in the condition monitoring applications
considered here is complicated, containing several different classes of signal
components. In this section a general signal model is presented which is aimed at
encapsulating the essential elements of signals from both a reciprocating engine
and a gearbox. The model employed can be expressed as

x(t)= sh(t)+ si(t)+ i(t)+ n(t), (7)

where sh(t) represents harmonic narrowband signal components, i.e., tonal signals
at frequencies which are integer multiples of the fundamental rotation speed, si(t)
is the sum of the incommensurate narrowband components, i.e., non-harmonically
related tonal signals, i(t) is the impulsive signal which represents the signal to be
enhanced via this pre-processing scheme and finally n(t) is a broadband random
noise, in this case modelled as Gaussian white noise.

4.2.      

In using equation (7) to model acoustic data from a car engine one can identify
the various model elements with physical mechanisms. The harmonic signals relate
to combustion and mechanical noise, the frequency content of which is modified
by the transmission path through which these signals are measured. The
non-harmonic components can arise from belt-driven components, such as the
alternator and cooling fan, whilst the broadband signal components arise from a
range of sources such as aerodynamic noise from the fan and airflow at the
intake/exhaust. Finally, the impulsive, fault related, signal can also be generated
via a number of mechanisms including combustion knocking and worn
components.

One period of the signal used to model noise from an automotive engine is
shown in Figure 4(e). This signal is based on equation (7), with its Fourier
transform depicted in Figure 4(f). The high amplitude wave, of which one period
can be seen, is the harmonic signal sh(t) and is shown in Figure 4(a). Figure 4(b)
depicts the impulsive component, i(t) which contains four distinct components
(nominally one per cylinder) whose centre frequencies are 0·5 kHz, 1·5 kHz,
2·0 kHz and 3·0 kHz. These impulses are modelled as exponentially decaying sine
waves. There are two non-harmonic components making up si(t), shown in Figure
4(c). The frequencies of these tones are 2·5 kHz and 0·9 kHz. Figure 4(d) shows
the broadband noise signal n(t).

4.3.      

The model (7) can be used to simulate vibration data from a gearbox. In the
case of gearbox data many of the signal components are generated via amplitude
or phase/frequency modulations and as a consequence the signal model (7), being
additive in nature, would appear to be inappropriate. However the harmonic
component, sh(t), upon assuming both the carrier and modulation signals to be
harmonic with the shaft rotation, can be expressed in a Fourier series form and
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Figure 4. The model signal of noise from an internal combustion engine. (a) fundamental firing
frequency and harmonics of crankshaft rotation speed; (b) pure tone noise at 0·9 kHz and 2·5 kHz;
(c) four multiple impulsive sounds at 0·5 kHz, 1 kHz, 2·0 kHz, 3 kHz; (d) broadband Gaussian noise;
(e) one period of the signal model; (f) Fourier transform of signal model.

so be represented as the sum of harmonic components. Further, in the case of small
magnitude phase modulations an additive model is reasonable [16]. In the
terminology of this application one considers the signal to consist of two elements,
the so-called regular and residual signals [16], the regular signals being the
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harmonic components, sh(t), and the residual signal being the difference between
the complete signal and the harmonic term: i.e., si(t)+ n(t)+ i(t).

The synthetic signal for the vibration data from a gearbox is shown in the time
domain in Figure 5(e), with its Fourier representation in Figure 5(f). The
tooth-meshing frequency is assumed to be 80 Hz. Figure 5(a) shows the pure tone

Figure 5. The signal model for gear fault. (a) Regular signal xb(t); (b) amplitude modulated
component; (c) phase modulated component; (d) impulsive signal; (e) total signal model; (f) Fourier
transform of signal model.
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T 1

Parameters used for the two-stage ALE

First stage ALE Second stage ALE

Filter length (L) 600 8
Decorrelation delay (D) 200 (20 ms) 1 (0·1 ms)

Convergence step-size (m) 0·2/lmax

Forgetting factor (l) 0·96
Period length 1000 (100 ms) 1000

signals, one at the fundamental frequency 80 Hz and the second, representing a
ghost component, at 128 Hz. There is also an amplitude modulated signal, as
shown in Figure 5(b). This is formed by multiplying a 160 Hz (the second order
meshing frequency) sine wave by a 2 Hz sine wave. Figure 5(c) shows a phase
modulated signal consisting of a carrier signal with a centre frequency of 240 Hz
(the third order meshing frequency), phase modulated by a 2 Hz sine wave. There
are two impulsive signals per revolution, displayed in Figure 5(d). One is a
windowed 120 Hz sine wave, where a short duration Hanning window is chosen
as the amplitude modulation function. The other impulse is modelled by a
windowed chirped sine wave, sin (2p240t+sin (2p2t)), where the windowing
function is the same as that used for the first impulse.

4.4.   - ALE     

In the previous two sections signal models aimed at typifying the acoustic and
vibration signals encountered in rotating machinery have been discussed. Within
these signals the detection of impulsive components is made difficult by the
additional noise components and conventional spectral analysis methods, based
on the FFT, fail. In this section the results of applying adaptive techniques to this
simulated data are presented.

The parameters of the adaptive schemes are selected in accordance with the
design criteria discussed earlier. The adaptation constant, m, for the first stage is
selected as m=0·2/lmax (where lmax is the largest eigenvalue of the input
auto-correlation matrix). The delay has to be sufficiently long so as to decorrelate
the impulses, and this can be achieved by making the delay at least the duration
of each impulse, in this example D1 =200 (20 ms). The filter length must also
satisfy L1 QTp −2D1 which is achieved here by selecting L1 =600. Information
about a suitable choice of the second filter length L2 can be made by plotting the
minimum mean squared error against the weight vector length [28] or alternatively
by the use of Singular Value Decomposition [29]. To ensure that the filter is
capable of rapid adaptation then short filter lengths should be employed; in this
simulation L2 =8 was selected. The delay D2 was set to one sample for reasons
already discussed. The convergence of the exact least squares algorithms is
controlled via a parameter called the forgetting factor, l, which has an equivalence
to 1–2m, where m is the convergence coefficient in the LMS algorithm. Usually l
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is selected such that 0·9Q lQ 0·99; here we use l=0·96. Table 1 summarizes all
the parameter choices employed in the adaptive schemes used herein.

The result of applying the two-stage ALE to the synthetic engine data signal
is depicted in Figure 6. The impulsive components are difficult to discern in the

Figure 6. Enhancement of synthetic automotive engine data. (a) Synthetic data; (b) Fourier
transform of synthetic data; (c) error output (ok,1) from the first stage; (d) Fourier transform of ok,1;
(e) filter output (yk,2) from the second stage; (f) Fourier transform of yk,2.
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Figure 7. Enhancement of synthetic gearbox data. (a) Synthesized data; (b) Fourier transform of
synthesized data; (c) error output (ok,1) from the first stage; (d) Fourier transform of ok,1.

unprocessed time series, Figure 6(a), and in its Fourier transform, Figure 6(b). In
the output of the first stage, shown in Figures 6(c) and (d), the narrowband
components have been significantly attenuated. The impulsive signals are more
clearly evident in the time series, Figure 6(c), but are still significantly masked by
the broadband noise. Applying the second adaptive filtering stage reduces the level
of this noise, leaving a much clearer time series, Figure 6(e), and Fourier
transform, Figure 6(f).

Figure 7 shows the result of applying ALE to the synthetic gearbox data. In
general, the level of broadband noise in gear vibration data is lower than that
observed in the engine data sets, and this is reflected in our simulated signals. The
result is that, generally, it is sufficient to only apply the first stage of the scheme,
i.e., to attenuate the narrowband components. In the original time series, and its
Fourier transform, Figures 7(a) and (b) respectively, the impulsive signals are
effectively masked.

The impulsive components are not easy to discern in the unprocessed time series
as shown in Figure 7(a) nor in their Fourier transform Figure 7(b). The output
of the first stage is shown in Figure 7(c), where the narrowband components, both
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at low and mid frequencies, have been significantly attenuated, with the result that
the impulsive signals are clearly evident, negating the need to apply the second
adaptive filtering stage. Further in the Fourier transform, Figure 7(d), the
contributions of the impulsive components are clearly evident as broad peaks
about 128 and 265 Hz.

Figure 8. Results of enhancement for measured data from an automotive engine. (a) Time series
data; (b) Fourier transform of data; (c) error output (ok,1) from first stage; (d) Fourier transform of
ok,1; (e) Filter output (yk,2) from the second stage; (f) Fourier transform of yk,2.
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Figure 9. Time–frequency analysis of automotive engine data. (a) Choi–Williams distribution of
raw data; (b) Choi–Williams distribution of enhanced data.

5. APPLICATION TO MEASURED DATA SETS

5.1.   

The vehicle used in this test is a European passenger car with a 2·0 litre, in-line,
4 cylinder engine. This engine has no fuel injection system. The engine was
operating at a nominal idling speed of 890 rpm: i.e., one order is approximately
14·8 Hz. The impulsive sounds are introduced by loosening a spark plug.
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One microphone was used to make a measurement in the engine compartment.
This microphone was calibrated using a Brüel and Kjaer pistonphone [94 dB(A)].
The measured analogue data were converted to digital form at a sampling rate of
10 kHz.

Figure 8 shows the signal after enhancement by the two-stage ALE. After the
first stage ALE the harmonic noises at engine rotation speed and pure tone noises
are nearly cancelled, as shown in Figures 8(c) and (d). The impulsive sound is
further enhanced via the second stage ALE, the output of which is shown in
Figures 8(e) and (f). Visually the success of the second stage can be seen, since the
level of the broadband noise has been reduced. From examination of the Fourier
representation, Figure 8(f), it can be seen that the impulsive sound of the test car
engine has a peak at slightly less than 1·3 kHz. This impulsive sound is
non-stationary in nature and one cannot readily use the frequency domain
representation to identify the temporal location of an event. This is important since
the location in time of an event gives information about the cause of the fault.

Figures 9(a) and (b) show the Choi–Williams distributions of the raw and
enhanced data, respectively. Form Figure 9(a) the impulsive signals are effectively
masked by the background noise. Whilst Figure 9(b) is clearer and one can identify

Figure 10. Results of enhancement for measured data from a gearbox. (a) Time series data; (b)
Fourier transform of data; (c) error output (ok,1) from first stage; (d) Fourier transform of ok,1.
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of a gearbox in which a faulty gear is known to be present [30]. Figure 10(b) shows
the Fourier transform of this data. From Figure 10(a) it is difficult to see the
impulsive signal because of the large amplitude tonal signals which constitute the
regular signal. In this gear the pinion has 28 teeth and the wheel has 55. Thus the
55th order represents the fundamental frequency. In order to remove the tonal
signals of the tooth meshing frequency a two-stage ALE is employed. The residual
component, xr(t), comes up clearly, as shown in Figure 10(c). Figure 10(d) shows
the Fourier transforms of these signals.

Finally, if one uses the Choi–Williams distribution on the raw data, as shown
in Figure 11(a), the result is relatively cross-term free. However, the fact that the
regular signal is much larger than the impulsive signal means the contribution of
the impulsive terms remain hidden. By first pre-processing the signal and then
applying the Choi–Williams algorithm, Figure 11(b) is obtained in which the effect
of the impulsive signal can be seen. From this final result one can conclude that
the gear fault occurs at shaft angles of 180° and 186° and at 1102 28 orders of
shaft rotating speed. This appears to result from an increase in the sidebands of
the second meshing frequency of the wheel gear.

6. CONCLUSIONS

The impulsive sound and vibration signals in rotating machinery are useful
indicators of faults in machinery. However the detection of these impulsive signals
can be difficult due to the competing noise sources. Under circumstances when a
synchronizing signal is unavailable an enhancement scheme, called the two-stage
Adaptive Line Enhancer, has been presented. This comprises two ALEs each with
a different role; one to remove tonal noise and the other to reduce broadband
noise. This technique has been shown to perform effectively. It should be
emphasized that whilst the performance of this system is encouraging, it is not
claimed that its performance is better than that which can be achieved by the use
of temporal averaging with a good reference signal. The utility of the method
described here predominantly lies in those applications where a synchronous signal
is unavailable, or is unreliable. This approach does have one further advantage
over time averaging in that it will remove all tonal components from the data set,
whereas temporal averaging can leave components which then need further
processing to suppress them.

The power of this method was demonstrated on both synthetic signals and
signals gathered from real machines. In both cases the success of the algorithm
was visible in both the time and frequency domains and allowed successful
characterization via a time–frequency representation.
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